Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis
نویسندگان
چکیده
Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote.
منابع مشابه
Combined experimental and computational approach to identify non-protein-coding RNAs in the deep-branching eukaryote Giardia intestinalis
Non-protein-coding RNAs represent a large proportion of transcribed sequences in eukaryotes. These RNAs often function in large RNA-protein complexes, which are catalysts in various RNA-processing pathways. As RNA processing has become an increasingly important area of research, numerous non-messenger RNAs have been uncovered in all the model eukaryotic organisms. However, knowledge on RNA proc...
متن کاملHigh Throughput Genome-Wide Survey of Small RNAs from the Parasitic Protists Giardia intestinalis and Trichomonas vaginalis
RNA interference (RNAi) is a set of mechanisms which regulate gene expression in eukaryotes. Key elements of RNAi are small sense and antisense RNAs from 19 to 26 nt generated from double-stranded RNAs. MicroRNAs (miRNAs) are a major type of RNAi-associated small RNAs and are found in most eukaryotes studied to date. To investigate whether small RNAs associated with RNAi appear to be present in...
متن کاملSpliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis.
Eukaryotes have evolved elaborate splicing mechanisms to remove introns that would otherwise destroy the protein-coding capacity of genes. Nuclear premRNA splicing requires sequence motifs in the intron and is mediated by a ribonucleoprotein complex, the spliceosome. Here we demonstrate the presence of a splicing apparatus in the protist Trichomonas vaginalis and show that RNA motifs found in y...
متن کاملNew finding of Giardia intestinalis (Eukaryote, Metamonad) in Old World archaeological site using immunofluorescence and enzyme-linked immunosorbent assays.
In this study, nine organic sediment samples from a medieval archaeological site at Pineuilh, France, were examined for Giardia intestinalis using two commercially available immunological kits [enzyme-linked immuno sorbent and immunofluorescence (IFA) assays]. Both techniques detected G. intestinalis in one sample, dated to 1,000 Anno Domini. This is the first time IFA was successfully used to ...
متن کاملSplit Genes: Another Surprise from Giardia
Some genes in the candidate early-branching eukaryote Giardia lamblia occur in separate pieces, transcribed from non-contiguous chromosomal locations. The pre-mRNAs from the separate pieces apparently find each other by regions of complementarity and are subsequently spliced together by the spliceosome. Could genes in pieces, transcribed into separate pre-mRNAs, have been an early feature of sp...
متن کامل